
AD-A137 940 A REVISED STONEMAN FOR DISTRIRUTED ADA (RADEMARK) l
SUPPORT ENVIRONMENTS(U) VIRGIRIA P0LYECHNIC INST AND
STATE OR V NLACKSRURG DEPT 0F C.d P GOODWIN JAN R4

UNL~ASS FED CS83VV1 V ROOD4-R3-K 0643 FIG 9/2 N

EN

mmhhmhhhhmhml
3.' 34

111 128

132

II'

jIL25__--- 1 1 6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OT STANDARDS 1963 A

Computer Science Department

DTIC
*ELECTEF-;t%SFEB 15 W4.K

D
Virginia Polytee/inic Institute

and State Unirersity
Blacksburg, Virginia 24061

84 02 14 162

A REVISED STONEMAN FOR
DISTRIBUTED ADA'_SUPPORT ENVIRONMENTS

Jeremy P. Goodwin**

Department of Computer Science
Virginia Tech

Blacksburg, Virginia 24061

CS830010
October 10, 1983

Accession For

NTIS GRA&I
TAB DTC

Unannounced DTIC

_________FEB 15 IM4

Distribution/ ELECTED
Availability Codes

SAvail and/or D
Dist Special

-, *Ji

SECURITY CLASSIFICATION OF THIS PAGE (hten Dale Enoiee40

REPORT DOCUMENTATION PAGE scm RE M
1. REPORT NUMBER GOVT ACCESS iO1 NO, . RCiPIETS CATALOG NUMBER

CS830010 - 37
4. TITLE (and u&lbe) 1. TYPE OF REPORT & PERIOD COVERED

A REVISED __NKAN FOR DISTRIBUTED ADA
Technical

SUPPORT ENVIRONETS 11. PERFOShING ONG. REPORT NUMBER

7. AUTHOR(e) 6. CONTRACT OR GRANT NMU1OEN'id

Jeremy P. Goodwin NOOO14-83-K-0643

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROA I[f, T, PIT rA

Computer Science Department
VPI & SU
Blacksburg, VA 24061

II. CONTROLLING OFFICE NAME AND ADDRESS It. REPORT DATE

Office of Naval Research, Code 442 January, 1984
800 North Quincy St. IS. NUMBER OF PAGES

Arlington, VA 22217 25
14. MONITORING AGENCY NAME & AODRESs4'II diflerent from Controlling Ofie) IS. SECURITY CLAS. (Of tsi se)

AFWAL/AAAF
Wright-Patterson AFB, Ohio 45433 Unclassified

Ila. 9ckast'lIC A TO N7WMGRAmIN

I. DISTRIBUTION STATEMENT (of this Report)

Approval for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abetrc entered in Block 20. It different bem Raper#)

IS. SUPPLEMENTARY NOTES

1S. KEY WORDS (Continue on reverse aide If necesaiy a Idntily by block uaher)

Ada, Programing Languages, Programing Environments, APSE, Open Systems
Interconnection

(0. ASTRACT (Conlinue on reverse aide it neeeesery ad Identif, by 6eek mber)
--/This paper extends the conceptual model of the PSTONEMAN4 document to

more completely model the interfaces and protocols that exist in the
Ada Programming Support Environment (APSE). A previous extension to
the STONEMAN model is reviewed and critiqued, the guidelines for the
APSE set forth in STONEMAN are reviewed, and an updated model is
proposed. The new model is shown to meet the guidelines set forth in
STONEMAN, and to include subsequent ideas as well. The new model is -- 0

,Do 1473 o.on Or I NOV *al SISOLE
S/N 0102- LF 014. mcvm, A8SiFlCASU OP TWO 0 1

eCUmATv CLASUPICATION OF Tei18 PA09 DO&ten*u

20.
thnapplied to the problem of user commiunication with an APSE, and itK is shown how the new model extends to include distributed APSEs, and it

is shown how the new model extends to include distributed APSEs as
well as single host APSEs. The issue of security enforcement, as a
necessary subset of dynamic verification, is also included in the new
model.

S/0N 0102. LPF.014- 601I

IMMuITY CLAW. ICATION OF THIS PAB6fMam Do& Une.

A REVISED STONEMAN FOR

DISTRIBUTED ADA7 SUPPORT ENVIRONMENTS

Jeremy P. Goodwin**

Department of Computer Science
Virginia Tech

Blacksburg, Virginia 24061

Tech. Rep. No. CS830010
January 13, 1984

ABSTRACT

This paper extends the conceptual model of the "STONEMAN" document
to more completely model the interfaces and protocols that exist
in the Ada Programming Support Environment (APSE). A previous
extension to the STONEMAN model is reviewed and critiqued, the
guidelines for the APSE set forth in STONEMAN are reviewed, and an
updated model is proposed. The new model is shown to meet the
guidelines set forth in STONEMAN, and to include subsequent ideas
as well. The new model is then applied to the problem of user
communication with an APSE, and it is shown how the new model
extends to include distributed APSEs as well as single host APSEs.
The issue of security enforcement, as a necessary subset of
dynamic validation, is also included in the new model.

* Ada is a registered Trademark of the AJPO, U.S. DoD.

** This research was supported by the Ada Joint Program Office
through the Office of Naval Research, Information Sciences
Division, under ONR contract number N00014-83-K-0643. The effort
was monitored by Virginia L. Castor Wright-Patterson AFB, Ohio,
and supervised by Dr. J.A.N. Lee, Virginia Tech. Reproduction in
whole or in part is permitted for any purpose of the United States
Government. The views expressed herein are solely those of the
author.*1

.

PAGE 2

I. INTRODUCTION

A fundamental objective of the Department of Defense (DoD)

initiative to develop Ada was to increase the portability and

maintainability of embedded software [11*. To achieve this

objective, the Ada Joint Program Office (AJPO) is workina to

ensure that Ada remains as independent of specific computing

systems and applications as possible. The Ada language has been

accepted by the American National Standards Institute (ANSI) as a

national standard, and has been proposed to the International

Organization for Standardisation (ISO) as an international

standard. The Ada Validation Organization (AVO) has been

established to enforce and protect the trademark for the language.

However, the Ada project has evolved beyond an effort toward a

common programming language for embedded software systems; work

has been begun to define requirements for a common Ada Programming

Support Environment (APSE), a Kernal Ada Programming Support

Environment (KAPSE), and the Common APSE Interface Set (CAIS).

The CAIS is part of the Ada standardization effort because it will

provide a standardized development and runtime environment for Ada

programs.

A previous report, "Validation in Ada Programming Support

Environments" 121, recommended that the Open Systems

Interconnection Reference Model be accepted as the underlying

model of APSEs, and that there be developed a 'Strawman' to extend

* Numbers in brackets refer to references at the end of the
report.

,F

PAGE 3

Ada systems into a networking environment, based on the OSI

Reference Model. The model proposed in 12] will be called a LAPSE

(Layered Ada Programming Support Environment) in this paper. That

report further suggested that the security aspects of the design

of APSEs be investigated and that the results of that study be

incorporated into the Stoneman requirements [3]. This paper will

examine these ideas further, critiquing the LAPSE and proposing an

updated and more detailed model, called the DAPSE (Distributed Ada

Programming Support Environment). The DAPSE models communication

between APSE tools through the use of the OSI Reference Model but

takes into account the need to extend Ada systems into distributed

environments. This model also incorporates a security layer, as

recommended by [2].

II. REVIEW OF LAPSE MODEL

This section reviews the LAPSE model suggested by [21 (see

Figure 1). In that report, the authors noted that "the original

intent of the OS Reference Model was not to actually represent an

implementation strategy but instead to model those elements of a

communications environment which need attention" (pg. 8). In

other words, the OSI model was not intended to force all

implementations to have seven layers, but rather to encourage all

implementors to layer their implementations, and to clearly

specify the functionality of each layer. Thus an application of

the OSI model to a specific implementation could quite conceivably

merge several layers into one, and split one of the OSI layers

PAGE 4

-------------- -- -

Application ------ >1 I>------>1 <---APSE Tools
----------- + +-----------+

Presentation ------ >1 < ---- >1 1< ---Data transfer
----------- + ------------ +

Session ---------- >1 1< ------ >1 I<---KAPSE Facilities
----------- + +-----------+

Transport -------- >1 1< ------ >1)
I I I)

Network ---------- >1 <)------>1
I I)<--Hardware Level

Data Link -------- >1 < > 1)I I I)
Physical --------- >1 < ------->1 1)

+---------------------------- ------- ------ -------- +

I Physical Media I
-- ------- +

Figure 1. LAPSE Model

into one or more sublayers. This argument was given as a

justification for the LAPSE model. The LAPSE model had three

layers, which corresponded conceptually to the upper three layers

of the OSI Reference Model. The bottom four layers of the OS

model (typically implemented in hardware) were not indigenous to

the LAPSE. The top layer of the OS model (The Application layer)

was mapped onto the top layer of the LAPSE model, called the APSE

layer. If the current environment was a Minimal Ada Programming

Support Environment, (MAPSE), then the top layer will only include

the necessary and sufficient toolset, not the user programs or

additional tools. Conceptually, there is no difference between an

APSE and a MAPSE. The second layer down (corresponding to the OSI

Presentation layer) was named the Data Transfer Layer. This layer

was to act as an interface layer between the APSE and the KAPSE,

and to implement the validation and security mechanisms suggested

in the report. The Data Transfer layer accomplished all matching

of formal and actual parameters, and associated typechecking. The

I

'

PAGE 5

bottom layer was the KAPSE Facilities layer, and was mapped onto

the Session layer of the OSI model. The report (21 suggested that

the KAPSE could be implemented as a collection of Ada packages.

The LAPSE had the advantage that it clearly delineated what

interfaces and protocols existed. The report called attention to

the existance of certain "hidden protocols" within the STONEMAN

model, and noted that these presented a difficult validation

problem. In the LAPSE model, these hidden protocols were no

longer hidden; they were revealed as KAPSE layer to KAPSE layer

communication. Furthermore, the LAPSE model was better than the

STONEMAN model because it took into account both validation and

security, by modeling the interfaces and protocols that must be

validated, and providing a layer where dynamic validation and

security checks could be performed. The STONEMAN model was not

detailed enough to reveal these problems since it was only two

dimensional.

III. PROBLEMS WITH LAPSE MODEL

The LAPSE model had three basic problems. The first, and

most bazic, was that it made an unacceptable use of the OSI model.

Since the OSI Reference Model is a model of a communications

environment, and not a programming environment, it was

inappropriate to fit the Ada Programming Support Environment onto

only the upper three layers of the OSI model. Nonetheless, the

principles of the OSI model are very much appropriate and ought be

adopted in the design of the APSE environment. That is, the APSE

PAGE 6

should be layered, and the internal implementation of one layer

should be changeable without necessitating a revision or rewriting

of code in the other layers. Furthermore, specific functionality

should be assigned to each layer of the implementation, and this

functionality should follow the overall design principle of

layered abstraction, where the services provided by each layer are

implemented only in terms of (and by calls to) the functionalities

of the layer immediately below.

A second problem with the LAPSE model was that it failed to

take into account (or even mention) the Data Base Conceptual

Schema [4]. The APSE model should be integrated with the data

base model, so that the design of the total environment is

consistent and so that the interfaces between the Data Base and

the KAPSE are well defined and easy to validate.

The third problem with the LAPSE model, and the problem with

the STONEMAN model before it, was that the model was not well

enough developed. It did not show where any the validation

mechanisms were to be installed. Report [21 stated that all

interfaces and protocols must be validated in order to validate

the environment, and it was this need that inspired the Data

Transfer layer, where validation of the APSE to KAPSE interface

was to occur. The problem was that this was not the only place

where validation of protocols or interfaces needed to occur. All

the horizontal protocols between two instances of layers at the

same level must also be validated. For instance, a compiler

could be communicating with an editor. Both these programs would

reside in the top layer. The compiler and editor would

PAGE 7

communicate via a virtual protocol which would be implemented by

calls through the interface to the Data Transfer layer. The Data

Transfer layer services used by the compiler and the editor would

also communicate via a virtual protocol which would be implemented

by calls through another interface to services in the KAPSE

Facilities layer. The KAPSE Facilities services would communicate

using an actual protocol. The LAPSE model did not provide a

mechanism whereby the virtual protocols could be validated.

Another place where the LAPSE model needed furthe, 'evelopment was

ii

in the distinction between dynamic and static ilidation. The

validation mechanisms suggested in [21 are all tatic, yet the

report suggested the creation of a layer where -idation could

occur. This validation would be dynamic, and the report did not

expand upon the mechanisms by which the validation would be

accomplished. It should be noted that there are two types of

dynamic validation: dynamic validation during the development

cycle, and dynamic validation in the runtime environment. The

first type of dynamic validation occurs in the Ada Programming

Support Environment on the host machine, and the second type of

dynamic validation occurs in the Ada Runtime Environment on the

target machine. Both of these sets of validation mechanisms must

be considered in any comprehensive APSE model *.

The report 121 also mentioned the need for some security

mechanisms, and suggested that they also be implemented in the

• Dynamic, built-in "validation" miqht be better termed
"verification"; however, some of the connotations of the term
verification are outside the domain of this report and thus the
term validation is used consistently.

PAGE 8

Data Transfer Layer. However, 121 did not expand on different

types of security mechanisms, nor did it distinguish between

friendly and non-friendly or security intensive environments in

its discussion of the need for security mechanisms. If a program

is allowed to operate in an environment where security is

important, and that program is not secure or does not meet the

security requirements associated with its environment, then the

validity of that environment has been jeopardized. Thus two

fundamental principles about security must be recognized: (1)

Different instances of Ada Programming Support Environments may

have different security requirements, and therefore a program that

is valid in one instance of the Ada environment may not be valid

in another instance of the Ada environment because it is not

secure, and (2), security is a subset of validation, i.e. a

program that is not secure (enough) is not correct. These ideas

clearly need much more attention bLfore a final model for Ada

environments can be approached.

Most of these issues were not addressed in the previous

report because it was preliminary and did not go into the level of

detail that would be necessary to deal with all these issues.

This paper attempts to investigate all these issues and refine the

model in the light of its findings. Thus the process of

successive refinement of the nodel is carried one more step,

arriving at a new model more complete than the earlier model. No

doubt further iterations will need to take place.

jk__

PAGE 9

IV. REQUIREMENTS

Before updating the previous model, the requirements for the
APSE should be reiterated and augmented by the ideas that have

been put forward since STONEMAN. The basic STONEMAN philosophy

(31 emphasized fourteen general guidelines. Five among them are

(1) long term software support, (2) host to target system software

portability, and (3) an integrated database and toolset, (4)

overall simplicity, and (5) uniformity of protocol. The user

interface to the APSE programs or tools should not be direct, but

should be a virtual interface to the KAPSE with minimal JCL

functions such as LOGIN/LOGOUT, CONNECT/RUN and control character

processing. Terminal interface drivers should not be part of the

KAPSE, but should interface to it, much as the APSE tools do.

This model of user communication with the system is similar to one

used in many operating systems; user I/O is handled by a special

I/O processor (hardware, software or firmware) and buffered into

the kernal of the operating system. A second concept that has

received attention since STONEMAN is the configuration or version

group, made up of shareable objects, each of which has a name and

attributes. Each object in the version group has a date as one of

its attributes, with later dated objects superceeding earlier ones

in subsequent configurations. A third concept, which is related

to the second, is that the APSE environment may in practice be

distributed, either between the host and target machine (for down-

line loading, trace data collection, or emulation) or between

several hosts (for resource or information sharing or

PAGE 10

communication).

V. DESCRIPTION OF THE DISTRIBUTED APSE (DAPSE) MODEL

The DAPSE model (see figure 2) is a three layer version of

model presented in [21. The top layer is called the APSE layer

+ ----------- -----------+

APSE Layer --->1 I I 1<--- APSE Layer
1 1 I I
+----------+ +----------+

Interface Layer --->1 I I 1<--- Interface Layer

+----------+ + -----------

KAPSE Facilities --- >1 I I I<--- KAPSE Facilities
Layer I j< ------ >1 I Layer

+----------+ +-----------

Figure 2. DAPSE Model

since it includes all APSE tools and application programs. It is

analogous to, but not overlayed upon, the Application layer of the

OSI Reference model. Conceptually, the user visualizes himself at

this level, since the programs he interacts with are contained in

this level: editors, compilers, debuggers, etc. If this layer

contains only the minimal necessary tools and not any other tools

or applications programs, then it is a Minimal Ada Programming

Support Environment (MAPSE). Thus a MAPSE is a minimal instance

of an APSE.

The middle layer is called the Interface layer. Interface is

meant in the sense that it has been used in STONEMAN, and this

layer has grown out of and is an expansion of the interface line

between the APSE and KAPSE in the STONEMAN model. The parameter

passing mechanisms that match the APSE actual parameters to the

,1,

| I II II - 1 '
!

" *

PAGE 11

KAPSE actual parameters and perform dynamic typechecking between

them exist in this layer. These mechanisms, formerly represented

as the thick line between APSE and KAPSE, have been made into a

level due to their complexity. The security mechanisms called for

by [2) also exist in this layer and work along with the

typechecking mechanisms. The principle is to detect and stop

security exceptions at as early a point as possible. This layer

dynamically prevents protected KAPSE packages from even being

called. Static validation mechanisms can show that the Interface

layer properly performs its functionalities, and then use that

assertion when validating the KAPSE facilities. The Interface

layer performs all dynamic interface validation, including but not

restricted to typechecking and package access control. In

addition, any necessary data transformation operations may be

performed within this layer. This layer can, like the KAPSE, be

implemented as a set of Ada packages, with a correspondence

between the names of the KAPSE level packages and the Interface

level ones. The KAPSE level packages will only be visible from

the Interface layer, and the APSE programs must call a KAPSE

facility by calling the appropriate Interface layer package. The

Interface layer will perform its validation and conversion

functions, and then invoke the KAPSE package with the validated

and possibly modified argument list.

The bottom layer is the KAPSE layer. It is composed of a set

of Ada packages that implement the kernal function of the Ada

Programming Support Environment. The KAPSE is the only layer that

will be implemented differently on different host machines, but

PAGE 12

regardless of implementation its functionalities will be the same

over all instances of the APSE. Part of the KAPSE may be

implemented in another language, such as the operating system

language of the source machine, but as much as possible should be

written in Ada itself, since it is validatable. No other layer

should have any non-Ada code. The functionality of the KAPSE

should be defined in such a way as to provide a general purpose

set of operating system type primitives which are robust enough to

use to implement the rest of the DAPSE. The functionality of the

KAPSE should not be defined in such a way as to prejudice the

implementation of the KAPSE toward any one particular architecture

among those on which the Ada environment must run.

Although three layers have been defined, this does not

preclude each layer from being broken down into sub-layers in

implementation. This is, in fact, anticipated as being the

natural outgrowth of the development of a system whose underlying

model is a layered one.

VI. RATIONALE FOR A LAYERED MODEL

A layered model follows the guidelines set forth by STONEMAN.

It aids long term software support by defining and consistently

maintaining the functionality of the KAPSE, so that internal

modifications to the KAPSE layer will not affect application

software, or any other software above the KAPSE layer. Since any

program will only reference those programs (or packages) in the

layer immediately below its own, and since the functionality (but

PAGE 13

not necessarily the implementation) of those programs or packages

is fixed across all systems, portability for all software above

the KAPSE layer is enforced. Since all protocols and interfaces

are clearly defined for the entire system, no hidden protocols

exist. By rigidly enforcing one means of inter-tool communication

through the KAPSE, an integrated toolset is arrived at and

uniformity of protocol is enforced. A layered model is at the

same time both simple and complete. For the applications

programmer, the APSE is a set of procedures, packages and tasks

that are visible to his program. Thus the concepts of the APSE

are those of the Ada language itself, and the most straightforward

possible. By judiciously grouping the visible packages into a

small but well organized set of packages the functionality of the

level below can be preorganized for the programmer. Only the

necessary portions of the packages need be made visible, and the

rest of the underlying layer need not concern the programmer.

This model makes the APSE an easy environment to use as a

programmer and to maintain as an APSE maintainer, for the same

reasons that abstraction makes any system easier to understand and

maintain.

VII. RATIONALE FOR THE INTERFACE LAYER

Since the other two layers have been present in both the

STONEMAN model and the LAPSE model, there is no need to motivate

their presence in the DAPSE model. The Interface layer, however,

needs further motivation. The first argument in favor of

PAGE 14

including this layer in the model is that this layer was really

always present. In STONEMAN, the intorfac, hotw-lon th-i KAI':;I-' and

the APSE was presumed to perform all of the functionality now

assigned to the Interface layer. No new functionality has been

added, except for the need for security mechanisms as a subset of

the validation mechanisms. The case for the inclusion of security

mechanisms somewhere in the model has already been made by 12].

The Interface layer is where these mechanisms belong, along with

the other dynamic validation mechanisms. The second argument in

favor of the new layer is that the interface mechanisms are too

complex, and their effects are too far reaching for them to be

ignored in the design of the APSE. If the interfaces are to be

designed then they must be visible as a part of the model. They

should not be allowed to fall into the crack between the APSE and

KAPSE. Thirdly, since validation is a repeated step in the life

of all APSEs, it is better to provide for it ahead of time. This

was the basic thrust of the recommendation of [21, that validation

requirements be established and included in APSE requirements

specifications. Finally, since security must be considered to

completely validate an APSE system, it is better that the security

mechanisms also be designed into the model from the beginning,

rather than added after the design has been completed. This is

more true of security mechanisms than of others because of the

subtle nature of security failures and the low level at which most

security mechanisms are implemented.

L -- tj

PAGE 15

VIII. DISTRIBUTED ADA PROGRAMMING SUPPORT ENVIRONMENTS

The concept of an APSE as a distributed system or a

configured system is also encompassed by the layered model. As in

the OSI model itself, the upper layers do not have any knowledge

APSE layer II I I I

Interface layer I I I II I I I

KAPSE layer and +---+ .
OSI application layer I <- 7 7 ->I I

OSI Presentation layer 6 6
+.----+ ---

OSI Session layer 5 5

OSI Transport layer 4 4

OSI Network layer 3 z

OSI Data Link layer 2 2

OSI Physical layer 1 I
+------.----------.-------+----

I Underlying Physical Media

Figure 3. DAPSE model integrated with OSI model

about the physical location of the peer process with which they

are communicating. The KAPSE layer to KAPSE layer protocol is the

only place where the actual locations of the source and

destination programs must be considered. If the source and

destination are on the same physical host, then communication may

be as modeled above (see figure 2). If not, then the

communication is via the network linking the two hosts. It is

intended that the networks used to link distributed hosts also be

PAGE 16

modeled after the OSI reference model. Thus the model is expanded

to the version shown in figure 3 in the case of distributed

communication. In fact, only a part of the KAPSE layer, the

package specifically concerned with communication, rather than the

entire KAPSE layer, need be concerned with whether or not the

source and destination are on the same host.

IX. USER COMMUNICATION APPLIED TO DAPSE MODEL

The issue of how a user will interface to the APSE is one

that should not be overlooked or put off until late in the design

phase if it is to be a natural and consistent interface. The

----------.. +----------

APSE Layer --- >1 I j<--- User modeled
I I I I as a program
+---------- +----------+

Interface Layer --- >(< k--- Terminal
I I I I Driver
+----------+ -----------+

KAPSE Facilities --- >1 I I I--- KAPSE terminal
Layer I < ------ >1 I I/O package

+----------+ +----------+

Figure 4. Communication with Users in DAPSE

layered approach handles the user much as if the user were in fact

an application program: that is, there is no difference between

communication with the user and communication with another APSE

program. All communication goes through the KAPSE, and the KAPSE

routes the 'message' back up through the appropriate layers to its

destination (see figure 4).

- 4 [4 4. - . ~

PAGE 17

X. CONCLUSIONS

The two part model presented in STONEMAN is no longer
descriptive enough to model all the considerations that have been
added since STONEMAN. A previous report originated the idea that
the OSI model be used as the underlying model of APSEs. It is
recommended that a three layered model, patterned after the OSI Reference
model, be adopted as the underlying model of APSES.

This report and a previous one have motivated the need for
dynamic validation. It is recommended that an investigation of dynamic
typechecking and validation techniques be performed, and that the results be
incorporated Into the design of the middle layer of the proposed model.

Security, as a subset of dynamic validation, is a necessary
consideration in any validation system. It is recommended that a
security mechanism be designed and incorporated into the middle layer of the
proposed model as early as possible to enforce the assertion that no
KAPSE facility can be called unless the appropriate security test
has been passed.

It may be found that the security mechanisms proposed by the
research recommended above are difficult or impossible to
implement in Ada as it is now defined. It is recommended that
subsequent research be undertaken to investigate ways in which Ada could
be extended to include security and validation mechanisms as a part of the
language, rather than as a part of the APSE or Ada Runtime Support
Environment.

I:.1

I'I

PAGE 18

XI. REFERENCES

(11 Carlson, W.E., Druffel, L.E., Fisher, D.A., and Whitaker,
W.A., "Introducing Ada", Proc. 1980 ACM Ann. Conf., ACM, New York
NY, 1980, 539 pp.

12] Kafura, D.E., Lee, J.A.N., Lindquist, T.E, and Probert, T.,
"Validation in Ada Programming Support Environments", technical
report, 1982

[31 Buxton, J.N., Requirements for Ada Programming Support
Environments, "STONEMAN", U.S. Dept. of Defense, February 1980,
pp. 50.

[41 van Griethuysen, J.J., ed., Concepts and Terminology for the
Conceptual Schema and the Information Base, ISO TC97/SC5/WG3, ISO
TC97 Computers and Information Processing, March 1982.

1.

TECHNICAL REPORTS DISTRIBUTION LIST

Leader Information Sciences Bob Converse
Engineering Sciences Directorate NRVSEA
Office of Naval Research RMS-408
800 North Quincy St. Washington, DC 20362
Arlington, VA 22217

Jay Ferguson
Office of Naval Research Resident DOD
Representative, Joseph Henry Building ATTN: T303, Jay Ferguson
eom 623 9800 Savage Rd.
2100 Pennsylvania Avenue, N. W. Ft. Meade, MD 20755
Washington, DC 20037

Jack Foidl
Director, Naval Research Laboratory TRW DSG
ATTN: Code 2627 3420 Kenyon Street *202
Washington, DC 20375 San Diego, CA 92110

Defense Technical Information Center John Foreman
Building 5, Cameron Station Texas Instruments, Inc.
Alexandria, VA 22314 P. 0. Box 405 M/S 3407

Lewisville, TX 75067
V. L. Castor
AFWAL/AAAF Barbara Frmhold
Wright-Patterson AFB, Chio 45433 U.S. Army CCM

DRSEL-TCS-ADA-3
Dr. Jack Kramer Ft. Monmouth, NJ 07703
I.ID.A.
1801 N. Beauregard St. Tim Harrison
Alexandria, VA 22311 Texas Instruments, Inc.

P. 0. Box 405 M/S 3407
Lt. Cdr Brian Schaar Lewisville, TX 75067
Ada Joint Program Office
3D139 (400AN) Hal Hart
Pentagon TRW DSG
Washington, DC 20301 One Space Park

R2/I127
Mitch Bassman Redondo Beach, CA 92078
Computer Sciences Corp.
6565 Arlington Blvd. Doug Johnson
Falls Church, VA 22046 SoftWrights Inc.
M/C 281 1401 N. Central Expressway

Suite 100
Frank Belz Richardson, TX 75080
T[I DSG
One Space Park Larry Johnston
R2/1 127 NADC
Redondo Beach, CA 92078 Code 503

Warminster, PA 18974

Tom Conrad
NUSC Elizabeth Kean
Bldg. 1171 RAGC/COES
Newport, RI 02840 Griffiss AFB, NY 13441

* I *'...,

PAGE 2

Tricia Oberndorf
Rudolph Krutar NOSC
Elizabeth Wald Code 8322
NRL San Diego, CA 92152
Code 5150
4555 Overlook Ave., S9 Sirley Peele
Washington, DC 20375 Guy Taylor

FCDSSA
Bill Laplant Code 822
HQ USAF/SITT Bldg. 1279 Dam Neck
Washington, DC 20330 Virginia Beach, VA 23461

Larry Lindley Lee Purrier
NFC D/072.21 George Robertson
6000 E. 21st St. FCDSSA
Indianapolis, IN 46218 Code 822

200 Catalina Blvd.
Warren Loper San Diego, CA 92147
NOSC
Code 8315 Mo Stein
San Diego, CA 92152 Ed Dudash

NSWC/DL
Lucas M. Maglieri Code N31
National Defense Hqds. Dahlgren, VA 22448
101 Colonel Bay Dr.
Ottawa, Ontario KlAOK2 Tucker Taft

Jim Moloney
Jo Miller Intermetr ics
NKC 733 Concord Ave.
Code 3192 Cambridge, MA 02138
China Lake, CA 93555

Rich Thall
Gil Myers SofTech
NOSC 460 Totten Pond Road
Code 8322 Waltham, MA 02154
San Diego, CA 92152

Chuck Waltrip
Philip Myers Johns Hopkins University
Dave Pasterchik Applied Physics Lab
NRVELEX Johns Hopkins Road
FLEX 8141A Laurel, MD 20707
Washington, DC 20360

Bill Wilder
MITRE Corp. So fTech
K203 Three Skyline Place
P. 0. Box 208 Suite 500
Bedford, MA 01730 5201 Leesburg Pike

Falls Church, VA 22041
Eldred Nelson
TW DSG Bernie Abrams
One Space Park Charles Money
R2/1076 Grumrnan Aerospace
Redondo Beach, CA 90278 Mail Station B38-35

Bethpage, NY 11714

PAGE 3

Dennis Cornhill Ron Johnson
John Beane Boeing Aerospace Co.
Honeywel 1/SRC 3903 Hampton Way
2600 Ridgeway Pkwy. Kent, WA 98032
MN17-2351
Minneapolis, MN 55413 Judy Kerner

Norden Systems M/S M171
Fred Cox P. 0. Box 5300
EES/SELiDSD Norwalk, CT 06856
Georgia Tech
Atlanta, GA 30332 Reed Kotler

Lockheed Missiles & Space
Dick Drake 1111 Lockheed Way
IBM Sunnyvale, CA 94086
Federal Systems Division
102/075 Pekka Lahtinen
Godwin Drive Oy Softplan AB
Manassas, VA 22110 P. 0. Box 209

SF-33100 Tampere 10
Jon Fellows Finland
System Development Corp.
5151 Camino Ruiz, 02-B14 Eli J. Lamb
Camarillo, CA 93010 Bell Labs - 3A405

600 Mountain Avenue
Herman Fischer Murray Hill, NJ 01974
Litton Data Systems
MS 64-30 Tim Lindquist
8000 Woodley Ave. Department of Computer Science
Van Nuys, CA 91409 VPI & SU

Blacksburg, VA 24061
Roy Freedman
Hazeltine ibrp. Dave Loveman
Research Laboratories Massachusetts Computer
Greenlawn, NY 11740 Assoc., Inc.

26 Princess St.
Anthony Gargaro Wakefield, MA 01880
Computer Sciences Corp.
304 W. Route 38 Tim Lyons
Moorestown, NJ 08057 Software Sciences Ltd.

Abbey House
Steve Glaseman Farnborough Hampshire
Teledyne Systems Co. GU14 7NB
L9601 Nordhoff St. England
Northridge, CA 91324

Dave McGonagle
Eric Griesheimer GE OR&D K-i
Nicholas Baker Schenectady, NY 12345
McDonnell Douglas Astronautics
5301 Bolsa MS 11-2 H. R. Morse
Huntington Beach, CA 92647 Frey Federal Systems

Chestnut Hill Rd.
Amherst, NH 03031

PACE 4

Erhard Ploodereder Thomas Standish
c/o Tartan Laboratories Programmin1 Fvironment
477 Melwood Ave. Project - Computer Science Dept.
Pittsburgh, PA 15213 University of California

Irvine, CA 92717
Ann Reedy
PRC Rob W :stermann1500 Planning Res Dr. TNO-IBBC

9A1 P.O0. Box 9
McLean, VA 22102 2600 AA Delft

The Netherlands
Jim Ruby
Hughes Aircraft Co. Herb Willman
P. 0. Box 3310, 618/P215 Raytheon Company - MSD
Fullerton, CA 92634 Hartwell Road (GRA-l)

Bedford, MA 01730
Sabina Saib
General Research Corp. Doug Wrege
P. 0. Box 6770 Dianna Humphrey
Santa Barbara, CA 93111 Control Data Corp.

5500 Interstate N. Pkwy.
Edgar Sibley Atlanta, Gk 30328
Alpha Omega Group, Inc.
World Building Suite 406 Larry Yelowitz
8121 Georgia Avenue Ford Aerospace & Communications Corp. WDL
Silver Spring, MD 20910 3939 Fabian Way MSV02

Palo Alto, CA 94303

A16i

